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The key idea of statistical hypothesis testing is to fix, and thereby control, the Type I error (false positive) rate
across samples of any size. Multiple comparisons inflate the global (family-wise) Type I error rate and the tradi-
tional solution to maintaining control of the error rate is to increase the local (comparison-wise) Type II error
(false negative) rates. However, in the analysis of human brain imaging data, the number of comparisons is so
large that this solution breaks down: the local Type II error rate ends up being so large that scientifically mean-
ingful analysis is precluded. Herewe propose a novel solution to this problem: allow the Type I error rate to con-
verge to zero alongwith the Type II error rate. It works becausewhen the Type I error rate per comparison is very
small, the accumulation (or global) Type I error rate is also small. This solution is achieved by employing the like-
lihood paradigm, which uses likelihood ratios to measure the strength of evidence on a voxel-by-voxel basis. In
this paper, we provide theoretical and empirical justification for a likelihood approach to the analysis of human
brain imaging data. In addition, we present extensive simulations that show the likelihood approach is viable,
leading to “cleaner”-looking brain maps and operational superiority (lower average error rate). Finally, we in-
clude a case study on cognitive control related activation in the prefrontal cortex of the human brain.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Functional magnetic resonance images (fMRIs) are typically used to
identify activated regions of the brain. After image preprocessing
(i.e., motion correction, co-registration, normalization, and spatial
smoothing), the standard statistical approach is to use a voxel-level
general linear regression model to characterize background neural
activity and yield t-statistics for testing hypotheses of activation. Voxels
are then classified as “activated” or “not activated” based on their
t-statistics reaching some threshold. This results in a statistical map of
brain activation. However, the voxel-wise t-threshold must be chosen
carefully because the number of voxels is large and this results in
family-wise Type I error (false positive) rate inflation. Simply increasing
the threshold for significance/positivity across all voxels in a uniform
manner controls the inflation, but it also increases Type II error (false
negative) rate significantly.

Standard approaches to controlling this inflation are varied. Either
they rely on finding an acceptable trade-off between Type II and Type
I errors or they focus on controlling the false discovery rate (FDR) in-
stead (Benjamini and Hochberg, 1995). Bonferroni corrections and the
random field theory (RFT) (Worsley et al., 1992) are examples of the
former: they control the family-wise error rate (FWER) at a pre-
partment of Biostatistics, 2525

ng).
determined level and are the most commonly used approaches in
fMRI data analysis. The alternative approach of controlling FDR has
been recently considered (Storey, 2002; Schwartzman et al., 2009).
Even though controlling FDR is “less conservative” than controlling
FWER, the classical FDR (Benjamini and Hochberg, 1995) and modified
FDR proposed by (Schwartzman et al. (2009) methods still yield signif-
icant false negativefindings. (Friston and Penny (2003) note that Bayes-
ian approaches offer an alternative approach in which statistical
inference relies on the Bayes factor (BF), proportional to posterior
odds ratio between two competing hypotheses. The posterior odds of
the alternative hypothesis is essentially a weighted average of the like-
lihood function over the parameter space weighted by the prior distri-
bution. Consequently, the choice of the prior heavily influences the BF,
one common criticism of the Bayes factor.

More importantly, these approaches do not address an obvious sci-
entific challenge: as sample size approaches infinity, the Type I error
rate remains fixed while the Type II error rate is indistinguishable
from zero. As a result, evenwithmyriad images collected, no brain acti-
vation map constructed from these approaches is ever completely free
of false positive findings. It is tempting to dismiss this concern because
no sample size is ever large enough to ensure perfect information (i.e.
no sample size is equivalent to infinitelymany images). But this reason-
ing is flawed: if the method is still wrong (α × 100) % of the time with
infinite information (as are hypothesis testing methods under the null
hypothesis), then they certainly can do no better with less information.
In fact, they can do not worse either. The sample size is irrelevant when
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it comes to controlling Type I error rate. This is both the strength and the
weakness of the traditional approach.

In this paper, we propose a novel alternative approach that is rooted
in the likelihood paradigm. Instead of using the tail area probability (or
p-value) as a measure of the strength of evidence, we use a likelihood
ratio. We use the tail area probability as the measure of how often mis-
leading evidence will be observed. Voxel-specific likelihood ratios are
derived from an appropriately specified spatio-temporal model. They
measure the strength of statistical evidence in the data about the level
of activation in a voxel. We examine the long-run behavior of likelihood
ratios in fMRI analyses and we show how to “control” it. For example,
direct interpretation of likelihood ratios can be shown to minimize the
average of the Type I and Type II error rates. In addition, the likelihood
analog of the Type I error rate converges to zero as the sample size in-
creases. Hence, the accumulation of (many) small Type I errors, i.e. the
family-wise error rate, remains small and controllable even when the
number of tests or comparisons is large.

The Likelihood paradigm offers distinct advantages over classical in-
ferential tools and modern ones based on false discovery rates:

(1) The likelihood ratio serves only as the reportable measure of the
strength of observed evidence; it is not adjusted for the number
of simultaneous comparisons.

(2) Likelihood analogs of the false positive and false negative error
rates are both controlled and they both converge to zero as the
statistical information (e.g., the number of images) increases.
This, in turn, drives both false discovery rates to zero.

(3) The global or overall error rates, analogous to family-wise error
rates, also converges to zero despite inflation from simultaneous
comparisons.

Points (2) and (3) above are distinct improvement over current ap-
plications of BF methodology. Also, the likelihood approach is free from
the a priori information that is required in Bayesian approaches. More
precisely, the interpretation of the data by the likelihood function
holds for any prior and would be consistent in that sense with any
Bayesian approach. An immediate consequence of these advantages is
that likelihood depictions of brain activation are always correct in the
limit and more often correct, on average, in finite samples.

For a concrete example, see Fig. 1, which is a representative real-
ization from brain image simulation we describe later (Section 3). It
is obvious from these images that the likelihood depiction (e) is the
closest to the true activation image (a), while other approaches show
moderate to severe deviation from the true image. This figure dis-
plays what we found to be true most often: the likelihood approach
provides a visually appealing trade-off between Type I and II error
rates while allowing both to virtually vanish as the statistical infor-
mation increases.

To precisely detail the operational characteristics of the likelihood
approach, some backgroundmaterial is required (Section 2).We derive
the likelihood analogs of the Type I and II error rates in Section 2.1 and
Fig. 1. Simulated voxel analysis for activation brainmap. Datawere simulatedwith two boxcar e
The figures derived as follows: (a) truth (five truly active regions), (b) analysis using RFT, (c) a
apply these methods in the context of simultaneous comparisons
(Section 2.2). In Section 3, we empirically validate the claimed advan-
tages and compare our method with other approaches, i.e., RFT, FDR,
and BF. We also analyze real fMRI data in Section 4 with the likelihood
approach. The two terms voxel and pixel are used interchangeably in
this paper, particularly in Section 3 in which all the simulation studies
were done in 2-dimensional images.
Likelihood paradigm

The law of likelihood (see Appendix A) explains how data represent
statistical evidence for one hypothesis over another (Hacking, 1965;
Royall, 1997). Specifically, data favor the hypothesis that better predicts
the observed data or gives higher likelihood. The likelihood ratio mea-
sures the degree to which one hypothesis is better supported over an-
other. Introductory material on the law of likelihood and recent
applications and advances are available in the literature (e.g., Blume,
2002; Blume et al., 2007; Blume, 2011a; Choi et al., 2008; Royall and
Tsou, 2003; Wang and Blume, 2011).

To fix ideas, consider independent samples x1, …, xn distributed as
f(X; θ). The likelihood function is L(θ) ∝ ∏i = 1

n f(xi; θ) where xi represent
observed data and θ the parameter of interest. Then, for any two com-
peting hypotheses, say H0 : θ = θ0 and H1 : θ = θ1, the strength of the
evidence for H1 over H0 is measured by the likelihood ratio LR =
L(θ1)/L(θ0) (Royall, 1997). A LR = 1 indicates neutral evidence. As the
sample size grows, the likelihood ratio will converge to either 0 or ∞
in support of the true hypothesis (Royall, 1997; Blume, 2002). Upon
collecting observations x1, …, xn, the observed likelihood ratio will fall
into one of three general regions for k ≥ 1: small LRs ∈ [0, 1/k] that indi-
cate strong evidence forH0 overH1,midrange LRs∈ (1/k, k) that indicate
weak (or inconclusive) evidence, and large LRs ∈ [k, ∞) that indicate
strong evidence for H1 over H0, which is illustrated in logarithmic
scale in Fig. 2.

Conventional benchmarks of k= 8, 32 are points of reference along
the gradual shift from weak (k ≤ 8) to moderate (8 b k b 32) to strong
evidence (32 ≤ k) (see Appendix E). This is similar to established bench-
marks for Bayes factors (Jeffreys, 1961; Kass and Raftery, 1995). Notice
that FWER or FDR methods also use benchmarks that depend on the
sample size and initial specification of the alpha-level. Justifications for
these benchmarks are well established elsewhere (Royall, 1997;
Blume, 2002). The point is that likelihood ratios are fundamentally a de-
scriptive tool. These benchmarks are not cuttoffs but rather guideposts.
Sometimes, we are forced to collapse the continuous scale to a dichoto-
mized one, such as when indicating when there is sufficient evidence
that a voxel is activated or not. To do this, we will use a k = 20. It con-
trols the probability of observing misleading evidence at 1/20(=0.05)
under very general conditions, thus providing a familiar analog for
strong control of the Type I error rate (Royall, 1997; Blume, 2002).
Hence comparisons between methods that control the Type I error
rate (or its analog) at the same rate are fairer. Importantly, the actual
probability of observing misleading evidence is often much less than
xternal stimuli, the spatial dimension of 91× 109, and the temporal dimension of T=128.
nalysis controlling FDR, (d) analysis using BF, (e) analysis using likelihood approach.



Fig. 2. Three evidence regions on logarithmic scale: (a) strong evidence for H0, (b) weak evidence, and (c) strong evidence for H1.
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its universal bound, 1/k, but the decrease is a function of the underlying
model.

Evidential quantities and misleading evidence

The likelihood framework carefully distinguishes among three evi-
dential quantities (Blume, 2011b):

(1) A measure of the strength of evidence: “How strong is the statis-
tical evidence for a particular voxel that is claimed as activated?”

(2) The probability that a particular study design will generate
misleading evidence: “What is the chance that the voxel-level
evidence will incorrectly favor activation when it is truly
inactivated?”

(3) The probability that observed data are misleading: “For the data
supporting activation in some voxels, what is the chance that
these observed data are misleading?”

Table 1, replicated from Blume (2011b), displays these evidential
quantities and their mathematical form.

The first quantity (LR) communicates the strength with which the
data support one hypothesis over another—it is the researcher’s essen-
tial tool for understanding what the data say. The second quantities
are the analog to the Type I (α) and Type II (β) error rates of hypothesis
testing. They are used only for study design purposes; they play no role
in the interpretation of data as evidence. In this paper, the two terms
mis0 and mis1 refer to the “would-be” or analogous Type I and Type II
error rates for the likelihood paradigm. It is important to note that the
classical Type I and Type II error rates are conceptually similar to the
probabilities of misleading evidence, but their differences are subtle,
meaningful, and critical to our application. Both are used to assess the
performance characteristics of the underlying approaches. But the ap-
proaches themselves have different goals (i.e., to make a decision vs.
reporting the strength of evidence in favor of the hypotheses). The
third quantity describes how likely it is that an observed result is mis-
leading. It depends on prior information about the hypothesis of interest
but is ultimately driven by the observed likelihood ratio (Blume,
2011b). The third quantity is closely related to the posterior probability
of the hypothesis P(Hi|data) for i ∈ {0, 1}, which is a type of false discov-
ery rate. Failure to distinguish between these three evidential quantities
leads to confusion about multiple comparisons (Blume and Peipert,
2004; Blume, 2011b).
Table 1
Three evidential quantities, measure for each quantity, and its mathematical form.

Evidential quantity What it measures Na

1 Strength of the evidence Lik
2 Propensity for study to yield misleading evidence Pr

3 Propensity for observed results to be misleading Pr
Misleading evidence is defined as strong evidence in favor of the in-
correct hypothesis, i.e., observing LRN kwhenH0 is true or LRb 1/kwhen
H1 is true. The probabilities of observing misleading evidence, mis0 =
P(LR N k|H0) and mis1 = P(LR b 1/k|H1), are both bounded by 1/k and
their average is bounded by 1/(k + 1) (Royall, 1997; Blume, 2002).
The probability is often much less than the universal bound because
misi → 0 for i ∈ {0, 1} as n → ∞.

This likelihood approach also has a genuine frequentist justification.
Instead offixing one error rate andminimizing the other, the lawof like-
lihood minimizes the average error rate at a given value k. Let γ(k) =
(α(k) + β(k))/2 be the average error rate with α(k) = P(LR N k|H0)
and β(k) = P(LR b 1/k|H1). Direct minimization of γ(k) occurs at k =
1 for any sample size. A general weighted average of error rates
ωα(k) + (1 − ω)β(k) is minimized with k = (ω)/(1 − ω), where
0 ≤ ω ≤ 1. When we later use k = 20 as a sufficient level of evidence
to indicate activation, we are implicitly setting weighting the Type I
error rate 19-times more than the Type II error rate. Both error rates
still shrink to zero, but this is slightly more conservative than using
the natural k = 1 evidential marker.
Multiple comparisons

Multiple comparisons are handled differently in the likelihood con-
text. Let θ denote the difference in the level of activation in a single
voxel under two experimental conditions. Typically, θ = β2 − β1

where the beta coefficients are corresponding to two distinct experi-
mental conditions in an appropriately specified generalized linear

model (see Section 3), but here it suffices to let θ̂ � Nðθ;σ2=nÞ where
σ2 is known and n is the number of images collected (note that in con-
ventional imaging analysis, n is often represented in time T). Replacing
the unknown variance with a consistent estimate does not change the
nature of these computations.Without loss of generality, let thehypoth-
eses of no differential activation be H0 : θ = 0. Temporal correlation is
ignored here, but its inclusion does not appreciably impact the example
or the point we wish to illustrate.

For illustration, consider an alternative of interest ofH1 : θ=σ, a dif-
ferential level of activation equals to one standard deviation. For a single
voxel, a standard hypothesis test with a one-sided Type I error rate of
α = 0.05 and a sample of 8 images has a Type II error rate of 0.118
(see Appendix C). With 4 independent voxels and a Bonferroni
corrected Type I error rate of α = 0.0125(=0.05/4), the voxel-wise
Type II error rate increases to 0.278. The family-wise Type I error rate
me Mathematical representation

elihood ratio LR
obability of observing misleading evidence mis0 = P(LR N k|H0)

mis1 = P(LR b 1/k|H1)
obability that observed evidence is misleading P(H0|LR N k)

P(H1|LR b 1/k)
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is controlled at 0.05, but now the family-wise Type II error rate balloons
to 0.728 (=1 − (1− 0.278)4).

In comparison, consider a likelihood approach that uses k = 8 to
indicatemoderate evidence. The probability of observingmoderatemis-
leading evidence is (see Appendix D)

mis0 ¼ M n; kð Þ ¼ Φ − logk =
ffiffiffi
n

p
−

ffiffiffi
n

p
=2

� �
;

whereΦ denotes the standard normal cumulative distribution function.
By symmetry, mis0 = mis1 = 0.016. When k = 20, these probabilities
drop to 0.007, illustrating that it is harder to observe stronger levels of
misleading evidence. The probability of observing weak evidence P(1/
8 b LR b 8), under either hypothesis, is 0.233. The analogous family-
wise likelihood error rates are both 0.062 (=1 − (1 − 0.016)4). The
effective family-wise Type I error rate is inflated by 0.012, while the
family-wise Type II error rate is reduced by 0.67.

Now, it could be argued that a direct comparison between likelihood
and hypothesis testing is inherently biased in favor of likelihood be-
cause likelihood essentially ignores weak evidence while hypothesis
testing treats weak evidence for the alternative as evidence for the
null (not a typo; weak evidence is in the fail to reject region). Suppose
then that we eliminate the weak evidence region by setting k = 1.
Now both approaches have only two regions, making comparisons be-
tween them fairer. Of course, this means we would interpret any
amount of evidence, nomatter how fleeting, as strong enough evidence
to bepotentiallymisleading (we think this practice is scientifically ques-
tionable, but it provides a “fairer” computational benchmark despite
philosophical inconsistencies). Not surprisingly, weak evidence is
much less reliable than strong evidence and, as a consequence, the like-
lihood error rates increase from 0.016 to 0.078 and 0.062 to 0.280. The
trade-off here is an increase of 0.23 in the family-wise Type I rate for a
reduction of 0.45 in family-wise Type II rate, compared to the Bonferroni
approach when the number of voxels is 4. This is displayed as the di-
chotomized likelihood paradigm, or DLP(k = 1), in Table 2. Note that
the average error, however, remains lower and the ability of our likeli-
hood approach to distinguish between weak evidence and evidence in
favor of the null hypothesis is a critical advance.

If instead we used k = 8 and disallowed weak evidence, then we
would actually be labelingweak evidence for the alternative as evidence
for the null hypothesis (i.e., this is DLP(k=8)). Problematic as this may
sound, it is routinely done in hypothesis testing. This is what keep the
Type I error rate from falling below α. Here the DLP(k = 8) yields a
family-wise Type I error rate of 0.016 for 1 voxel and 0.062 for 4 voxels;
family-wise Type II error rate of 0.249 for 1 voxel and 0.682 for 4 voxels;
and a family-wise average error rate of 0.133 for 1 voxel and 0.372 for 4
voxels. For completeness, we note that in the above illustration, the
Bonferroni with 1 voxel approach is equivalent to DLP with k = 1.92,
and with 4 voxels it is equivalent to k = 10.37.

Finally, the likelihood family-wise error rates can always be driven
to zero with a sufficient large sample size:

global error rate ¼ 1− 1− error rate per voxelð Þm
¼ 1− 1−misið Þm ; i ¼ 0;1f g

→1− 1−0ð Þm as the number of images acquired→∞
¼ 0 ;

wherem is the number of voxels. Moreover, the probability of observing
weak evidence also converges to zero as the sample size grows, so we
Table 2
Family-wise error rates for Bonferroni, likelihood, and dichotomized likelihood (DLP) approach

Family-wise Type I error Family-wise Type

Voxels Bonferroni Likelihood DLP(1) Bonferroni

1 0.050 0.016 0.078 0.278
4 0.050 0.062 0.280 0.728
are sure to be left with the strong evidence in the correct direction
(Royall, 1997, 2000; Blume, 2002). With pre-determined global Type I
error rate or false discovery rate, it would not be possible to achieve
that the global Type I error rate converges to zero with a sufficient
large sample size. In this paper, the amount of information
(i.e., sample size) comes fromeither thenumber of subjects, thenumber
of images collected, or both. In practice, itwould be infeasible to have in-
finitelymany subjects, but it would be feasible to collect a large number
of images so that the asymptotic behavior of the LP approach can be
warranted.

Spatio-temporal simulations

We validated our proposed approach with simulation studies based
on spatially and temporally correlated time series with length T at each
voxel. After fitting the appropriate voxel-specific general linear model,
we aggregated results and estimated the Type I and II error rates for
various approaches to controlling multiple comparisons: RFT, FDR, BF,
LP, and DLP.

Data generation

To mimic the characteristics of functional magnetic resonance
imaging data with two boxcar external stimuli, first we generated
time series with different lengths, i.e., T = 64, 128, 256, and 320 using
autoregressive model with order one (AR(1)), and the spatial dimen-
sion was 32 × 32 voxels. For the sake of simplicity and computational
efficiency, we investigated only four different lengths of time series in
a small 32 × 32 region even though T = 64 in such a small spatial
dimension might not be common in practice. Let Y(v,t) denote the
response at a voxel v and time t. Then the model with P = 2, i.e., two
conditions: active and rest, is

Yv tð Þ ¼
XP
p¼1

Xp tð Þβp
v þ ∈v tð Þ; ð1Þ

where Xp(t) is the convolution between the pth stimulus impulse func-
tion (boxcar function for this simulation) and hemodynamic response
function which is assumed to indirectly characterize the change of neu-
ral activity. We assume that the first stimulus is on during [1, T/4 + 1]
and [2T/4, 3T/4 + 1] and the second is on otherwise, and ∈ v(t) follows
AR(1) process with AR parameter of 0.4, t = 1, …, T. For white noise
component of AR(1) model, we assumed a Gaussian distribution with
themean of zero and the standard deviation of 1.5. The canonical hemo-
dynamic response function from SPM8 (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/) was used to generate the design matrix Xp(t) in
(1). We assume that there are two square active blocks: one block con-
sists of 64 voxels and the other of 36 voxels. The effect size asmeasured
by β2− β1 in (1) is one under the assumption that the hypothesis of in-
terest is H0 : β2 − β1 = 0 vs. H1 : β2 − β1 N 0 at each voxel. Spatial cor-
relation was imposed on the data via an exponential covariance
function with the decaying parameter of 2 and variance of 2.5. For
Fig. 1, the spatial dimension of 91× 109with T=128was used to create
five active blocks consisting of a total of 300 voxels. For temporal corre-
lation, a similar AR(1) process with the standard deviation of the white
noise of 2.5 was employed for temporal correlation but Gaussian
smoothing kernel with σ = 1.5 was applied to impose spatial
es.

II error Average family-wise error

Likelihood DLP(1) Bonferroni Likelihood DLP(1)

0.016 0.078 0.164 0.016 0.078
0.062 0.280 0.340 0.062 0.280

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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correlation on the data instead of using the exponential covariance
function. Contrast-to-noise ratio for the former simulation set is about
0.46 and that for the latter simulation related to Fig. 1 is about 0.34.
All the simulation parameters used to generate Figs. 1 and 3 are summa-
rized in Appendix E. To investigate the robustness of the Gaussian noise
assumption, we generated data using a chi-square distribution with 3
degrees of freedom (something sufficient to be non-symmetric but
not pathological), i.e., we set the white noise in the AR(1) process to
be a chi-square distribution after removing the mean to have zero-
mean random noise. Since a chi-square distribution with 3 degrees of
freedom is known to be highly skewed, the robustness of each approach
can be clearly assessed. Also, we examine the effect of different k values
that indicate sufficient evidence for activation on the brain maps that
are based on the likelihood paradigm when T = 128.

Results

Error rates with different T
To analyze the simulated data, we fit a common general linearmodel

at each voxel while taking into account both spatial and temporal de-
pendency in the data. For our approach (LP and DLP with k = 20), at
each voxel, we also used the data from its immediately neighboring
voxels to handle the underlying spatial correlation, while the temporal
correlation was modeled as AR(1) process. For other approaches, we
followed their standard protocol, i.e., employing spatial smoothing
with FWHM = 8 and AR(1) process. We implemented the RFT proce-
dure by precisely following Worsley (1994), FDR by following
(Genovese et al. (2002), and BF by following Kass and Raftery (1995).
For the sake of computational efficiency, Bayes factors were estimated
via Laplace approximation instead of Markov chain Monte Carlo
(MCMC) (Kass and Raftery, 1995). That is, our approach applies spatial
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Fig. 3. Simulation results with different T=64, 128, 256, 320 and k=20 for LP and DLP. (a) Typ
null voxels) (b) Type II error rates (the average of the number of false negatives divided by the t
DLP (blue), and LP (purple) based on 500 iterations sampled fromGaussian distribution. (d) The
for LP at different length of time series.
smoothing on likelihood functions for each voxel and its immediately
neighboring voxels, while the conventional approach applies spatial
smoothing on the raw data and maximizes the likelihood function for
the mean response at that voxel. For both cases, we used the iterative
reweighted least squares (IRLS) to estimate the regression parameters
and variance components. Then, we accounted for multiple compari-
sons by each method and computed the Type I and II error rates. We
used k=20 for the likelihood computations and we used the 95th per-
centile value (99th percentile value to generate Fig. 1) of the MLE of
β2 − β1 as the value (=δ1) for alternative hypothesis: H0 : β2 − β1 =
0 andH1 : β2−β1= δ1. To approximate the BF at each voxel, a Gaussian
distribution with the mean of zero and the variance of 100, N(0,100),
was used as a non-informative prior distribution for each beta coeffi-
cient. With this prior, we were able to avoid having an extremely con-
servative activation map, e.g., no positive findings with N(0,10000).
For the same reason, we classified each voxel as non-null if its log(BF)
was greater than 0.5, which is generally less conservative than recom-
mended, e.g., 3.0 ~ 5.0 (Kass and Raftery, 1995).

Comparing the two error rates across methods enables us to assess
the performance of each method and the change in the performance
as the sample size grows. Fig. 3 summarizes the results for 500 repeti-
tions for each length of time series. In Fig. 3, the upper two plots
(a) and (b) illustrate the behavior of the Type I and II error rates
resulting from the five approaches, i.e., RFT (red), FDR (olive), BF
(green), DLP (blue), and LP (purple) as the length of time series varies
from T = 64 to T = 320. Controlling FWER maintains the global Type I
error rate at or below the nominal error rate 0.05. However, because
FDR and BF do not control the global Type I error rate, it can be very dif-
ferent from 0.05 as shown in Fig. 3(a). As T increases, it is evident that
the Type I error rate corresponding to DLP decreases as explained in
Section 2. By definition, the Type I error rate based on DLP should be
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the same as the one based on LP, illustrated as one purple line in
Fig. 3(a), whereas the Type II and mean error rate based on DLP tends
to be larger than those for LP, illustrated as two separate lines (blue
and purple) in Fig. 3(b) and (c). It may seem counter-intuitive that
the Type I error rate associated with RFT, FDR, and BF increase with
the length of time series as shown in Fig. 3(a). However, this is a result
of their extreme conservativeness in rejecting null hypotheses: when
there is much less information, i.e., T = 64, the three methods are less
likely to reject the null hypothesis, leading to very small Type I error
rates (~0). With more information, i.e. T = 128, 256, and 320, the
three methods tend to “find” more active voxels in error. The more
they “find” active voxels, the more they can make mistakes.

Increases in sample size (or length of time series T) confer increased
power, and a decrease in Type II error rates is shown in Fig. 3(b). Be-
cause the gain in power dominates the gain in Type I error rates, all
mean error rates decline as T increases in Fig. 3(c). It is obvious that LP
outperforms all the other methods and DLP outperforms RFT, FDR, and
BF in terms of mean error rates. It is noteworthy that the difference in
Type II error rates between DLP and LP decreases as T increases because
DLP converges to LP as T grows, indicating that the number of voxels
falling into the weak evidence region (or equivalent to inconclusive
zone) in Fig. 2 sharply drops as T increases as shown in Fig. 3(d). The
proportion of voxels classified as inconclusive in both null (solid
black) and non-null (dotted black) regions diminishes from 16.7% and
17.35% when T = 64 to 2.0% and 4.0% when T = 320, respectively. The
same estimation and inference tools, i.e., RFT, FDR, BF, and DLP, were
used to analyze the data containing five active blocks illustrated in Fig. 1.
Error rates with different effect sizes and alternatives
The impact of the effect size β2 − β1 on error rates was investigated

by assuming the effect was uniformly distributed [0.2, 1.5] with a mean
set to 0.85. The error rates resulting from this simulation showed a pat-
tern similar to that illustrated in Fig. 3, while varying the effect size
tended to inflate both types of error rates in all the methods. We ob-
served an increase of mean error rate of 0.048 for RFT, 0.037 for FDR,
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alternative values.
0.036 for BF, 0.035 for DLP, and 0.002 for LP, on average across the
four smoothingmethods (described in Section 3.2.4) at T=128. There-
fore, our simulation results appear robust to the variation of the effect
size across voxels as long as the effect sizes are not too small (not too
near the null).

To illustrate the effect of choosing different alternative values on the
performance of DLP, five percentile values, i.e., 65, 75, 85, 95, and 99, of
MLE of β2 − β1 were chosen as alternative values. The corresponding
mean error rates and proportions of voxels classified as inconclusive
are summarized in Fig. 4. The mean error rates with respect to alterna-
tive values inDLP (purple line) are all smaller than the error rates result-
ed from three other approaches as shown in Fig. 4(a), although the
performance of FDR is the same as DLP when the 99th percentile
value of the MLE was used to choose an alternative value. We expected
to achieve the lowest mean error rate when we set the true proportion
of null voxels (about 90% in this simulation study) to be at the alterna-
tive value. In Fig. 4(b), as the percentile approaches the true proportion
of the null voxels, the number of voxels classified as inconclusive in null
(solid black) and non-null (dotted black) regions decreases. Although
the proportion observed in non-null regions is slightly increased from
85th to 99th percentile, the overall proportion is deceasing due to a
sharp decrease in the proportion in null regions. As seen in Fig. 4, it ap-
pears that a percentile between 90th and 99th of the MLE would work
well for the alternative hypothesis compared to the other conventional
methods if the true proportion of non-null voxels is not very high.
Error rates with chi-square distribution
Also, to assess the robustness of our approach,we followed the same

estimating and inference procedures to analyze the second set of data
generated using a chi-square distribution with 3 degrees of freedom.
The overall pattern of Type I, II, and mean error rates illustrated in
Fig. 5 looks similar to the corresponding plots in Fig. 3. However, at
T=64 and 128, RFTwas only able to detect a small number of activated
voxels, so the Type I error rates are close to zero while the Type II error
rates are close to one. As shown in Fig. 5(c), even at T = 320, RFT
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displays the worst performance compared to the other methods, indi-
cating that RFTwould be very conservative regardless of the true under-
lying error distribution in model (1). In Fig. 5(c), the LP and DLP
outperform the conventional methods in terms of mean error rates.
However, the similarity between Figs. 3 and 5 supports that all five
methods are quite robust against violating the Gaussian assumption.

Error rates with different smoothing methods
To assess the effect of the size of the smoothing kernel for RFT,

FDR, and BF, we generated the data from a Gaussian distribution
with T=128 combined with an exponential spatial covariance function
with adecaying parameter of 2. Then,we estimated theparameters of in-
terest and applied eachmethod, i.e., RFT, FDR, BF, and DLP, to account for
multiple comparisons. Note that we applied only DLP here as it is domi-
nated by LP in any case. We evaluated the performance of each method
at different smoothing kernel size: FWHM = 0 (no smoothing),
FWHM=4 (mild spatial smoothing), FWHM=8 (high spatial smooth-
ing), and using the information from immediately neighboring voxels
(=UseNeighbors) in order to make a fair comparison of the methods
after removing the effect of the size of the smoothing kernel. As shown
in Fig. 6(a) and (b), RFT (red) attains the lowest Type I and highest
Type II error rates regardless of smoothing kernel size and method, ex-
cept for BF with UseNeighbors. Comparing to FDR (olive), DLP (purple)
results in smaller Type I error rates and similar level of Type II error
rates, but the mean error rates for both methods look alike in Fig. 6(c).
The overall performance of each method is the worst when FWHM =
0, but it is much improved by taking into account the underlying spatial
correlation, e.g., spatial smoothing or borrowing the information from
neighboring voxels. It is surprising to observe a significant improvement
in the mean error rate for RFT when combined with UseNeighbors in-
stead of spatial smoothing. In contrast, the performance of BFwhen com-
bined with UseNeighbors seems to be much worse than when the data
were spatially smoothed, which is consistent across different length of
time series. Note that the mean error rate for each method is highly de-
pendent on the corresponding Type II error rate.

We further investigated the relationship between the two conven-
tional approaches and DLP by characterizing the behavior of Type I
error rates while matching their Type II errors. For each conventional
approach, we found a value of k for DLP which resulted in the same
Type II error rate at each of Monte Carlo iterations (n=500). Searching
such a value of kwas performed using a simple exhaustive searching al-
gorithm on a predefined set of values k at each iteration. The results are
displayed in Fig. 6(d). There seems to be no difference in Type I error
rates between RFT (red) and DLP (cyan) and between BF (green) and
DLP (pink), whereas DLP (blue) slightly outperforms FDR (olive) both
for FWHM= 8 and UseNeighbors.

These results indicate that the likelihood approach generally outper-
forms the other commonly used methods in the brain imaging analysis,
regardless of the length of time series. This result is not due to the effect
of the size of spatial smoothing kernel but due to the characteristics of
the likelihood paradigm that are described in Section 2.

Effect of expanding weak evidence zone (benchmarking the magnitude of
the LR, k)

Making fair comparisons among these approaches requires that we
identify a comparison metric that is applicable across all of the ap-
proaches. Themetric we have chosen is a simple binarymap of brain ac-
tivation, i.e., DLP map with k = 20. It is simple, intuitive, and visually
appealing. However, the likelihood approach is not designed to yield a
binary classification, so it must be modified slightly to permit such a
comparison. To be clear about how we could construct a brain map,
we present the following simple example.Wewill then further simplify
this map so that it is comparable with standard approaches. We gener-
ated three representative evidencemaps from the simulation at T=128
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corresponding to k = 8, 20, and 32 in Fig. 7(d), (e), and (f), where the
“weak” evidence (i.e., LRs bewteen 1/k and k) are denoted as white.
LRs greater than k that favor the activation hypothesis are denoted in
red and LRs less than 1/k indicatingnoevidence for activation are denot-
ed in blue. As k increases, the weak evidence region becomes wider,
resulting in more voxels falling into the weak evidence region. Impor-
tantly, we see that the choice of k is largely inconsequential, except per-
haps at the edges of the red regions. As illustrated in Fig. 3(d), however,
the number of voxels classified as inconclusive decreases as the length
of time series increases. We know from theoretical arguments that as
the sample size increases, the LRwill eventually support the correct hy-
pothesis. Hence, the number of white regionswill shrinkwith addition-
al data. Even with T=128, it is hard to distinguish between figures (d),
(e), and (f) in Fig. 7, indicating the choice of the evidential level needed
to show activation is somewhat robust evenwith time series as large as
T = 128.

Notice that dark red areas are largely void of LRs that strongly favor
the null (i.e., blue) and that the edges of the activation regions are al-
most uniformly white. This is to be expected as the edges are hard to
identify and so the transition from red to blue voxels is buffered by a
“weak evidence zone”which is inwhite. It is obvious that the likelihood
depiction (b), (d), (e), or (f) possesses more information regarding the
strength of evidence supporting the alternative (red color) and the
null (blue color) than the binary map (c) in Fig. 7 at various k values.
Generating different log-likelihood ratio maps with combinations of k
and alternative values would be able to shed light on scientific findings
that may be hindered by conservative conventional imaging analysis
tools. A critical point is that standard brain maps based on p-values or
hypothesis testings are unable to distinguish between the blue and
white regions. This is because under the null hypothesis, the p-value is
uniformly distributed, so all large p-values are inconclusive (i.e., weak
evidence) and none can be interpreted as evidence supporting the
null hypothesis.

fMRI data analysis

To identify activation patterns in a study designed to test cognitive
control related activation in the prefrontal cortex (PFC) of the human
brain, we used the proposed likelihood approach. Below, we describe
the background, motivation, and description of these data that are rele-
vant to the current analysis of detecting patterns of activation.

Based on prior work (e.g., Badre and D'Esposito, 2007; Badre et al.,
2009; Long and Badre, 2009; Badre and Frank, 2012), we know that a
fronto-parietal network is expected to be activated in an experimental
situation where a subject selects one of two perceptual dimensions
(i.e., shape or texture) of a stimulus in order to make a response. In
this experiment, participants were expected to choose one of four
keypress responses based on the relevant perceptual dimension that
was cued by a color stimulus. More details about the experiment can
be found in Long and Badre (2009) and Kang et al. (2012). For a given
block of trials, either one dimension (e.g., only shape) would be cued
throughout (D1) or two dimensions (both shape and texture) could
be cued (D2). Cognitive control is required on D2 blocks in order to se-
lect the relevant dimension based on color, while minimal cognitive
control is required on D1 blocks. Based on prior work (Badre and
D'Esposito, 2007; Badre et al., 2009; Badre and Frank, 2012), the con-
trast of D2 N D1 should produce activation in the fronto-parietal
network.

In the experiment, therewere 288 trials, 144 of each dimension con-
dition (D1, D2). Each trial lasted 2 s, with a variable inter-trial interval of
0–8 s. The trials were grouped into six scanning runs, with 48 trials per
run. Each run consists of 4 blocks, which follow an ABBA format for



Fig. 7. Simulated voxel analysis for activation map. Data were simulated with two boxcar external stimuli as described in 3.1 with the temporal dimension of T=128. The figures derived as
follows: (a) truth (two truly active regions in red), (b) log-likelihood ratio map without applying k, (c) DLP map with k = 20, (d) LP map with k = 8, (e) LP map with k = 20, (f) LP
map with k = 32. “LP map with k = 8 (20 or 32)” means that the weak evidence zone is from 1/8 (1/20 or 1/32) to 8 (20 or 32) and so any LRs in that set are set to white. The
figures (d), (e), and (f) are not the same but very similar, indicating the minimal effect of cutoff value when T is long enough.
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dimension type (e.g. D1, D2, D2, D1). The order of dimension condition
is counterbalanced across subjects.

Whole-brain imagingwas performed using the Siemens 3 T TIM Trio
MRI system. Functional images were acquired using a gradient-echo
echo-planar sequence (TR = 2 s; TE = 30 ms; flip angle = 90; 33
axial slices, 3 × 3 × 3.5 mm). After the five functional runs, high-
resolution T1-weighted (MP-RAGE) anatomical images were collected
for visualization (TR=1900ms; TE=2.98 s;flip angle=9; 160 sagittal
slices, 1 × 1 × 1 mm).

Preprocessing were performed using FSL software package (FMRIB
software Library, (Smith et al. (2004)), which includes slice timing
correction, head motion correction across all runs, co-registration, and
normalization on to the Montreal Neurological Institute (MNI) stereo-
taxic space. But the images were not spatially smoothed. After prepro-
cessing steps, general linear models as shown in (1) were fitted to the
data collected from a single subject as described in Section 3.2 for LP ap-
proach usingMatlab (Mathworks, Natick,MA). Themodel contains only
three covariates, which are for D1, D2, and the instruction period (IP).
The three stimuli are convolved with the canonical HRF used in SPM8
and are denoted by XD1, XD2, and XIP, respectively. The corresponding re-
gression coefficients are βv

D1, βv
D2, and βv

IP at voxel v, where βv
D2 − βv

D1 is
of main interest to test the hypothesis, H0 : βv

D2 − βv
D1 = 0 and

H1 : βv
D2 − βv

D1 = δ1, where v = 1, …, V. We used 95 percentile value

of the distribution of β̂
D2
−β̂

D1
as δ1 and set k=20as in simulation stud-

ies. To illustrate the difference in resulting activation map, we also ana-
lyzed the data following typical protocol which includes slice timing
correction, head motion correction across all runs, co-registration, nor-
malization to the MNI space, spatial smoothing (FWHM = 6), fitting
the first and second level GLM models, and then cluster thresholding
using FSL. The cluster thresholding approach, consisting of a Z statistic
thresholding at 2.3 and RFT (default method in FSL), is known to be
much less conservative than controlling FDR at voxel-level.

Both the cluster thresholding approach and DLP(k=20) approach lo-
cate activation in lateral frontal and parietal cortex, consistent with the
fronto-parietal network commonly observed in these response selection
tasks as depicted in Fig. 8. Importantly, however, the RFT analysis locates
primarily left lateralized activation in prefrontal cortex shown in Fig. 8(a).
In Fig. 8(b), the DLPmethod locates activation bilaterally and as far rostral
as frontal pole. In general, the activation located byRFT comprises a subset
of those identified using DLP. This illustrates the reduced vulnerability to
Type II errors when using the DLP approach, which is less likely to sup-
press important scientific findings that are often ignored by overly con-
servative classical Type I error correction tools.

Hence, using likelihoodmethods,we verifywhat is nowknown to be
true: activation patterns aremuchbroader thanwhat standardmethods
in this setting typically discover (because they are too conservative).
The LP clearly identifies a broader network associatedwith the contrast.
Compared to the cluster thresholding, controlling voxel-level FWER
using RFT or FDR at 0.05 instead of employing cluster thresholding ap-
proach resulted in activation maps with only a few blobs (not included
here).

We need a method that can correctly identify the entire areas of ac-
tivation in the fronto-parietal network that is engaged in sustained at-
tention and working memory (Coull et al., 1996). The dysfunction of
the network was found in people with neurobehavioral disorders,
e.g., alcoholism and substance abuse (Boettiger et al., 2007), and bipolar



Fig. 8. Activation maps for the 50th axial slice (MNI Z-coordinate = 26), where yellow
blobs indicate activated areas resulted from (a) controlling FWER at 0.05 using cluster
thresholding in FSL, which consists of a Z statistic threshold at 2.3 and RFT (default meth-
od in FSL), after applying spatial smoothing (FWHM = 6), and (b) employing the
DLP(k = 20) approach without spatial smoothing.
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disorder (Najt et al., 2013). By reliably identifying the cognitive control
related activation patterns, we believe that our LP approach will shed
new light on the neurobiological basis of such disorders associated
with dysfunction in the fronto-parietal network.

Comments

The proposed likelihood approach appears to overcome the severe
conservativeness of standard multiple comparisons methods. It results
in significantly reduced Type II and global error rates compared to
other conventional methods, enabling the discovery of more truly active
voxels. A key advantage is the ability to describe evidence asweak.More-
over, the Type I error inflation, that can result from disallowing this
advantage, appears to be generally low and quite acceptable. The simul-
taneous convergence of both likelihood version of global false positive
and false negative error rates to zero is another notable property that
present significant promise for statistical methods in neuroimaging.
We note that likelihood methods can also be constructed in such a way
as to impart robustness to model mis-specification (Blume et al., 2007).

One potential limitation is the dependence of evidential likelihood
ratios on a specific alternative. Although we showed that a percentile
between 90th and 99th of the MLE of linear contrast of regression coef-
ficients, e.g., β1− β2 would be a good alternative value, choosing a good
alternative value still deserves further research. Evidence is like power
in this way, and we view this as a welcome advance that eliminates
the entrenched confusion between statistical significance and clinical
significance. However, we note that power is never criticized for de-
pending on a specific alternative and the concept of power averaged
over all alternatives does not readily appear helpful. In our simulations
and data-driven example, we choose for our alternative the 95th per-
centile of the distribution of the maximum likelihood parameter esti-
mates. This data-driven approach appears to work well in practice and
we are involved in ongoing research in this area. The caveat is that re-
placing the fixed simple alternative with a data-driven one (i.e., one
that now changes with the sample size) results in a slight increase in
the probability of observing misleading evidence. However, by using
the 95th percentile of the MLE distribution, we drastically reduce the
variability of the alternative and it behaves almost as if it were a fixed
alternative.

Friston and Penny (2003) note that Bayesian or empirical Bayesian
approaches offer an alternative approach with some advantages similar
to that gained with a likelihood approach. However, based on our sim-
ulation results, it was shown that both LP and DLP would outperform
the approach based on approximated Bayes factors proposed by
Kass andRaftery (1995). Space does not permit full discussion regarding
similarity and dissimilarity between Bayesian approach and the likelihood
paradigm, but the likelihood approach can be thought of as prior-less
Bayesian approach that retains excellent operational characteristics. In
our estimation, the proposed likelihood approach offers a welcome
compromise between classical frequentist approaches and Bayesian ap-
proaches. Importantly, likelihood retains the desirable properties of
classical methods (e.g., control over error rates) while shedding the un-
desirable ones (e.g., ad hoc adjustments of error rates). Neuroimaging
research could be well served by likelihood methods that promote
gains in accuracy, efficiency, and flexibility.
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Appendix A. Law of likelihood

The law of likelihoodwas presented by Hacking (1965) and restated
by Royall (1997):The law of likelihood: If hypothesis A implies that the
probability that a random variable X takes the value x is pA(x), while
hypothesis B implies that the probability is pB(x), then the observation
X = x is evidence supporting A over B if and only if pA(x) N pB(x), and
the likelihood ratio, pA(x)/pB(x), measures the strength of that evidence.

When a random variable X follows a probability distribution with a
parameter θ, observation x provides a likelihood function L(θ; x). Con-
sider the simple null hypothesis H0 : θ = θ0 and simple alternative hy-
pothesis H1 : θ = θ1. According to the law of likelihood, observation
X = x provides evidence supporting the alternative hypothesis if and
only if L(θ1; x) N L(θ0; x) and the ratio L(θ1; x)/L(θ0; x) measures the
strength of that evidence. Simply stated: the hypothesis with a higher
likelihood is better supported.

Appendix B. Interpretation of k

A likelihood ratio of k means the same strength of evidence regard-
less of context. This is because the evidence from the data changes the
prior odds into the posterior odds by exactly k. That is, the likelihood
ratio represents the degree to which one's belief or knowledge is
changed by the data (all priors, regardless of their magnitude, are
changed by exactly the same amount on the odds scale). To illustrate
for this context, we have the following thought experiment:Suppose
that there are two hospitals: one hospital has only patients with mild
cognitive impairment (MCI) and the other accepts equal numbers of
MCI and Alzheimer's patients. You are masked to characteristics of
both hospitals and are asked to identify which one accepts only MCI pa-
tients.With currentMR technology, you believe that you candistinguish
MCI from Alzheimer's patients by looking into the resting-state func-
tional connectivity (FC) between two pre-determined regions of inter-
ests (ROIs), i.e., you are expected to see strong functional connectivity
in an MCI patient while there will be no FC in an Alzheimer's patient.
To this end, you decide to visit one hospital, randomly pick a patient
with replacement, acquire that patient's resting-state fMRI, and investi-
gate the FC between the two regions. Your hypothesis is,H0: that hospi-
tal has the equal numbers of MCI and Alzheimer's patients, H1: that
hospital accepts only MCI patients. Suppose that you find two MCI
patients in a row from the hospital. Then the likelihood ratio supporting
H1 is LR= 12/0.52 = 4, with three patients in a row, LR= 8, etc. There-
fore, we can interpret that the strength of evidence associated with
LR=4as the same evidence as that provided by two randomly sampled
consecutive patients that turned out to have MCI. This would generally
not be convincing, hence it is tagged as“weak” evidence. LR = 20 (or
LR = 32) is equivalent to consecutively sampling 4.3 (or 5) patients in
a row that all turn out to haveMCI. If only half the patients at the hospi-
tal had MCI, it is unlikely for you to sample 5 MCI patients in a row.
Hence LR of 32 marks the transition from moderate to strong evidence.
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Appendix C. Computing Type II error rate

Let the null and alternative hypotheses of interest be:H0 : θ= θ0 and
H1 : θ = θ0 + σ given θ̂ � Nðθ;σ2=nÞ. Suppose that we have 8 images
(n = 8) and consider a single voxel. Because the Type I error rate is
fixed at 0.05 (one-sided),

Type I error rate ¼ P Z ≥ 1:645jH0ð Þ
¼ P

ffiffiffi
n

p
θ̂−θ0

� �
=σ ≥ 1:645

� �
under the null : θ̂ � N θ0;σ2=n

� �
¼ P θ̂ ≥1:645σ=

ffiffiffi
n

p� �
if θ0 ¼ 0 ;

where Z denotes a standard normal distribution, Z ~ N(0, 1). Then, the
Type II error rate is by definition,

Type II error rate ¼ P θ̂ b θ0 þ 1:645σ=
ffiffiffi
n

p jH1

� �
¼ P Z b 1:645−

ffiffiffi
n

p� �
under the alternative : θ̂ � N θ0 þ σ ;σ2=n

� �
¼ 0:118:

When we consider four voxels instead of a single voxel, the Type I
error rate per voxel is 0.0125 (=0.05/4) with a Bonferroni correction
and then it is straightforward to compute the Type II error rate of
0.278 per voxel following the steps described above.

Appendix D. Probability of observing misleading evidence

For the purpose of illustration, one example is used as follows. Sup-
pose that X1, X2, …, Xn i.i.d. normal with unknown mean μ and known
varianceσ2, and two hypotheses areH0 : μ= μ0 andH1 : μ= μ1. Denote
the likelihood function as Ln(μ) =∏i = 1

n f(Xi; μ). Then the probability of
observing misleading evidence for μ1 over μ0 is

ℙ log
Ln μ1ð Þ
Ln μ0ð Þ

� �
N logk

				H0


 �
¼ M n; kð Þ ðD:1Þ

where n is the size of the data and M(⋅,⋅) is a function of k and n. In the
Eq. (D.1), k N 1 is any positive fixed number and does not depend on the
error rates. The likelihood ratio in Eq. (D.1) can be further expanded as

Ln μ1ð Þ
Ln μ0ð Þ ¼

exp −
1

2σ2

Xn

i¼1
xi−μ1ð Þ2

� 

exp −
1

2σ2

Xn

i¼1
xi−μ0ð Þ2

� 

¼ exp −
1

2σ2 n μ1 þ μ0ð Þ μ1−μ0ð Þ−2 μ1−μ0ð Þ
Xn
i¼1

xi

" #( )

¼ exp
n μ1−μ0ð Þ

σ2 Xn−
μ1 þ μ0ð Þ

2

� � �

where Xn ¼ 1
n∑

n
i¼1xi . Under the null, the probability that the data

support the alternative hypothesis over the null hypothesis by at least
a factor of k as shown in Blume (2002) is\kern1pt

M n; kð Þ ¼ ℙ log
Ln μ1ð Þ
Ln μ0ð Þ

� �
N log k

				H0

� �

¼ ℙ Xn≥
σ2

n μ1−μ0ð Þ log kþ
μ1 þ μ0

2

					H0

( )

¼ ℙ Z≤−
σffiffiffi

n
p

μ1−μ0ð Þ log k−
ffiffiffi
n

p
μ1−μ0ð Þ
2σ

� �

¼ Φ −
σffiffiffi

n
p

μ1−μ0ð Þ log k−
ffiffiffi
n

p
μ1−μ0ð Þ
2σ


 �

ðD:2Þ
where Φ denotes the standard normal cumulative distribution func-
tion. In the Eq. (D.2), it is obvious that for any fixed k ≥ 1, as n → ∞,

then Φð− σffiffi
n

p ðμ1−μ0Þ
log k−

ffiffi
n

p ðμ1−μ0Þ
2σ Þ→Φð−∞Þ ¼ 0 and so M(n, k) → 0.

Similarly, it is straightforward to show that the probability of observing

weak evidence, ℙð− log k b logfLnðμ1Þ
Lnðμ0Þgb log k

			H0Þ→ 0 as n → ∞. Note

that this probability is the same as ℙð− log k b logfLnðμ1Þ
Lnðμ0Þgb log k

			H1Þ .
Asymptotic behavior of the probability of observing misleading evi-
dence under H1, which is analogous to the Type II error rate, is the
same as that of the probability under H0.
Appendix E. Summary of parameters for simulation

We summarize all the parameters used for our main simulation
studies resulting in Figs. 1 and 3 in the following table.
Simulation parameters
for Fig. 1
Simulation parameters
for Fig. 3
imension
 91 × 109
 32 × 32

umber of “active” voxels
 300
 100

umber of images
 T = 128
 T = 64, 128, 256, 320

R(1) parameter
 0.4
 0.4

ariance of random noise
 2.5
 1.5

ffect size β1 − β2
 1
 1

atial dependence
 Spatial smoothing

FWHM = 3.5

Exponential function
Decaying parameter = 2
Variance = 2.5
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