Prosodic Constraints on Morphological Development

Katherine Demuth
Brown University

1. The acquisition of grammatical morphology

Since Roger Brown's (1973) influential work on the acquisition of grammatical morphology by Adam, Eve, and Sarah, the issue of how and when children come to acquire grammatical morphemes has presented a challenge to the field. Since that time there have been several proposals for how and why grammatical morphology might be missing from children’s early speech. These proposals have ranged from the primacy of semantics in early grammars (e.g. Braine 1971; Bowerman 1973) to the impoverishment of early syntax (e.g. Guilfoyle & Noonan 1988; Lebeaux 1989; Radford 1990). Yet many syntacticians note that children seem to ‘know’ that grammatical morphemes exist even if they don’t produce them (e.g. Demuth 1992, 1994; Hyams 1992). If this is true, then there needs to be an explanation for this phenomenon.

It has recently been proposed that children’s early omission of grammatical morphology is due to rhythmic production constraints (e.g. Gerken, Landau & Remez 1990; Gerken 1991; Gerken & McIntosh 1993; Demuth 1994). Under this proposal stressed or strong (S) syllables and the unstressed, or weak (w) syllables that follow them form trochaic feet — structures which are seen as playing an important role in determining which syllables will be retained or omitted in children’s early speech. Given a wSw sequence of syllables such as in the word banana, the rhythmic production constraints approach would predict that the second and third syllables — i.e. the Sw trochaic foot nana, would surface, the initial weak syllable being deleted unless it could combine with a stressed syllable from a preceding word to form a trochaic foot. This approach seems to account for much of the data around the ages of 2;6-3;6, especially in stress-timed
languages like English and Dutch. It is unclear, however, how it generalizes to earlier stages of acquisition, and how it accounts for the acquisition of grammatical morphology crosslinguistically. To address these issues Demuth (1995, 1996a) and Demuth & Fee (1995) have developed a model of Prosodic Constraints which appeals to higher-level prosodic structures such as phonological words and phonological phrases, and shows how early words may be constrained at these different levels of structure. This approach provides a framework for examining earlier stages of prosodic word development not only in stress-timed languages like English, but also in morphologically rich languages where ‘stress’ or ‘syllable prominence’ is represented at higher levels of prosodic structure such as the phonological phrase (e.g. French, Sesotho). Furthermore, a theory of Prosodic Constraints offers a developmental account of how children eventually move to a more adult-like phonological and morphological grammar.

The purpose of this paper is to account for syllable omission and the emergence of grammatical morphology in early Spanish. The data are drawn from spontaneous productions of Sofia, a child learning Argentinean Spanish, between the ages of 1;8 and 1;9 (Gennari & Demuth 1997). Interestingly, we find that a rhythmic production constraints approach makes the wrong predictions about where grammatical morphology should be included or omitted in early speech productions. However, if we determine the prosodic shape of the child’s early monomorphemic words, we find that the inclusion of certain grammatical morphemes is actually predicted, providing further support for the presence of prosodic constraints.

The paper is organized as follows: After briefly outlining the theory of Prosodic Constraints and how it applies in acquisition, we report on the shapes of Sofia’s early monomorphemic words and multimorphemic words and phrases, focusing on the emergence of articles, negation, and prepositions. The results of this study are interesting for several reasons. First, they demonstrate how the Prosodic Constraints approach to early acquisition can be extended to account for syllable/morpheme omissions in multimorphemic utterances. Second, they indicate that the prosodic constraints operating in early Spanish are somewhat different from those found in English. And finally, they provide an explanation for why certain types of grammatical morphology may appear earlier in the speech of Spanish-speaking children than in that of their English-speaking peers. The paper concludes with a discussion of how a theory of Prosodic Constraints contributes to a more general Constraint-based Approach to Language Acquisition.

2. Prosodic constraints in children’s early words

Demuth & Fee (1995) develop a prosodic approach to early phonological word development, showing how English- and Dutch-speaking children gradually learn to exploit units of the Prosodic Hierarchy (Selkirk 1984; Nespor & Vogel 1986), focusing initially on the levels of structure at and below the Phonological Word (e.g. the mora, syllable, Foot, and Phonological Word). These and higher levels of the Prosodic Hierarchy are illustrated in (1) below, along with sample pieces of phrase structure.

(1) The Prosodic Hierarchy

<table>
<thead>
<tr>
<th>Utt (Phonological Utterance)</th>
<th>I think Sue likes bananas</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP (Intonational Phrase)</td>
<td>Sue likes bananas</td>
</tr>
<tr>
<td>PP (Phonological Phrase)</td>
<td>likes bananas</td>
</tr>
<tr>
<td>PW (Phonological Word)</td>
<td>bananas</td>
</tr>
<tr>
<td>Ft (Foot)</td>
<td>nanas</td>
</tr>
<tr>
<td>σ (Syllable)</td>
<td>nas</td>
</tr>
<tr>
<td>µ (Mora)</td>
<td>na</td>
</tr>
</tbody>
</table>

Demuth & Fee (1995) identify four major stages of prosodic word development below (see Fikkert 1994 for similar proposals). Interestingly, epenthetic syllables are sometimes found with trisyllabic targets during later stages of development, resulting in prosodic words composed of two feet.

(2) Stages in the Development of Phonological Words

(e.g. for target = banana)

Stage I Core (CV) Syllables ba, na
Stage II Minimal Words nana, bana
Stage III 1 Stress-Foot nana, nana
Stage IV 2 Stress-Feet babana

Many children seem to spend several months at the Minimal Word stage, where the majority of their early Phonological Words take the shape of binary feet, either disyllabic feet like /dog/ ‘doggie’ (3a), or monosyllabic bimoraic feet like /dog/ ‘dog’ (3b), where the first mora is the nucleus (vowel) of the syllable, and the second mora either a vowel or coda consonant.
due to the fact that syllable structure in languages like English and Dutch is especially complex — taking some time to learn, and that keeping words to a Minimal Word length provides the learner with the opportunity to explore the nature of that syllable structure more fully. Alternatively, it may be that Minimal Words are especially prominent in the acquisition of languages like English and Dutch because many of the high frequency words in both these languages tend to be monosyllabic. That is, the presence of a Minimal Word stage of development may have something to do with learnability and language planning factors (e.g. start with small syllables/words — cf. Elman 1991, 1993; Newport 1990) and/or it may reflect children’s awareness of the frequency effects of the prosodic structures present in the ambient language.

The identification of these prosodic structures in the early development of languages like English and Dutch raises several questions. First, are these patterns of prosodic development universal? That is, are they found in all children and in all languages? Peters (1983, 1985) has suggested that some English-speaking children do not follow this pattern at all, but begin to speak in larger prosodic chunks where the identification of individual words is difficult at best. We suggest that some children may approach the acquisition of prosodic structure by focusing initially on higher levels such as the Phonological Phrase or the Phonological Utterance. Furthermore, we predict that such a strategy will have serious implications for the acquisition of grammatical morphemes. To test these hypotheses we turn to early words in Sofia’s speech, examining the prosodic structure of both monomorphemic and multimorphemic utterances.

The data are drawn from Gennari & Demuth (1997) who report on the longitudinal development of Sofia’s early words and utterances between the ages of 1;8 and 2;3 years. Sofia had already begun speaking a few months earlier, so the data do not include her earliest words. In this paper we examine the structure of Sofia’s monomorphemic and multimorphemic words and utterances at 1;8 and 1;9 years, focusing specifically on the structure of her Phonological Words (PW) and Phonological Phrases (PP). In so doing we follow Hayes (1995) in determining the nature of feet and Phonological Words.

3. Prosodic constraints in Early Spanish

Spanish is a language which permits stress on any of the last three syllables of a word (Harris 1983). The default (and most frequent) position for stress is the penultimate syllable of a word. At the lexical level there is no secondary stress: This arises only at the level of the Phonological Phrase, where unstressed
syllables can assume secondary stress, with an alternating SwSw pattern emerging. Given that Spanish exhibits high frequency of trochaic feet, we might expect young Spanish-speaking children to show evidence of trochaic feet in their early utterances.

At 1;8 years Sofia uses both trochaic (5) and iambic (6) words.

(5) Trochaic Feet

<table>
<thead>
<tr>
<th>Child</th>
<th>Adult target</th>
</tr>
</thead>
<tbody>
<tr>
<td>[óto]</td>
<td>/róto/</td>
</tr>
<tr>
<td>[káxa]</td>
<td>/káxa/</td>
</tr>
<tr>
<td>[néne]</td>
<td>/néne/</td>
</tr>
<tr>
<td>[éta]</td>
<td>/éta/</td>
</tr>
</tbody>
</table>

(6) Iambic Feet

<table>
<thead>
<tr>
<th>Child</th>
<th>Adult target</th>
</tr>
</thead>
<tbody>
<tr>
<td>[papá]</td>
<td>/papá/</td>
</tr>
<tr>
<td>[mamá]</td>
<td>/mamá/</td>
</tr>
<tr>
<td>[aká]</td>
<td>/aká/</td>
</tr>
<tr>
<td>[así]</td>
<td>/así/</td>
</tr>
</tbody>
</table>

Although trochaic words are much more frequent in Spanish than iambic words, it would appear that Sofia has available to her the following prosodic structures.

(7) a. Trochaic Feet

\[
\begin{array}{c}
\text{PW} \\
\downarrow \sigma \\
\text{Ft} \\
\downarrow \sigma
\end{array}
\]

b. Iambic Feet

\[
\begin{array}{c}
\text{PW} \\
\downarrow \sigma \\
\text{Ft} \\
\downarrow \sigma
\end{array}
\]

Alternatively, it could be that the ‘iambic’ forms are actually more prosodically complex structures which encompass a monosyllabic trochaic foot and a preceding syllable represented at a higher level of structure — i.e. at the level of the PW (8).

(8) PW

\[
\begin{array}{c}
\downarrow \text{Ft} \\
\downarrow \sigma \\
\sigma
\end{array}
\]

Further support for the presence of PW structures like that in (8) come from Sofia’s trisyllabic word targets (9).

(9) Trisyllabic Targets: wSw > Sw ~ (wSw)

<table>
<thead>
<tr>
<th>Child</th>
<th>Adult target</th>
</tr>
</thead>
<tbody>
<tr>
<td>[máká]</td>
<td>/ámáká/</td>
</tr>
<tr>
<td>[manbána]</td>
<td>/mansáná/</td>
</tr>
<tr>
<td>[méka]</td>
<td>/múpeká/</td>
</tr>
<tr>
<td>[tána]</td>
<td>/bentáná/</td>
</tr>
<tr>
<td>[ríba]</td>
<td>/arába/</td>
</tr>
</tbody>
</table>

Many of the trisyllabic wSw targets are reduced to a Sw trochaic foot, but a few are realized in their full wSw form. Thus, though there seems to be a tendency to omit pre-tonic syllables, as predicted by the rhythmic production constraint approach, and to produce only a binary foot (or Minimal Word), Sofia is apparently capable of representing PWs at 1;8 years with the structure given in (10).¹

(10) PW

\[
\begin{array}{c}
\downarrow \text{Ft} \\
\downarrow \sigma \\
\sigma \\
\end{array}
\]

Note that this structure has an initial weak syllable: Lexical items with this type of structure are infrequent in languages like English and Dutch until after the age of two (cf. Smith 1973; Fikke 1994; Wijnen, Kirkaar & den Os 1994; Demuth & Fie 1995). Thus, although Sofia at 1;8 years frequently reduces her words to a disyllabic trochaic foot (9), she is also able to produce prosodically more complex structures similar to those found in English- and Dutch-speaking children after the age of 2. It is therefore possible that Sofia uses similar structures, such as that in (8), for representing so-called ‘iambic’ words rather than having two types of feet — trochaic and iambic.

There are few examples in Sofia’s spontaneous speech corpus of trisyllabic targets. However, if she is capable of representing PWs that are larger than a Foot, this should be evidenced in larger PWs as well. Harris (1983) notes that Spanish lexical items undergo ‘restructuring at the level of the Phonological Phrase, introducing secondary stress on alternating syllables’. This means that PWs with the lexical structure wSwSw become SwSw when embedded in a larger PP, or as the only word in an utterance. Consider the following quadrisyllabic targets, where secondary stress falls on the first syllable of the target word.
(11) Quadrisyllabic Targets: SwSw > wSw \sim (Sw)

Child Adult target
a. [dóro] /nodóro/ ‘lavatory’ (1;8)
b. [kaléra] /eskáléra/ ‘stairs’
c. [maléra] /mamadéra/ ‘feeding bottle’

Here we see that either the initial Sw foot of the word, or the initial S (secondarily stressed) syllable of the word, has been omitted. Under the *rhymic production constraints* approach the omission of the initial Sw foot would be completely unexpected, as would the omission of the initial S syllable. Under the *prosodic constraints* account, however, the forms in (11) are expected given what we have already seen with disyllabic and trisyllabic targets in (9) and (10). That is, PWs with the structure in (12a) are allowed, whereas PWs composed of two (binary) feet are not yet permitted (12b).

(12) a. \begin{prosodicDiagram}
 & PW
 & Ft
 & \sigma \sigma \sigma
\end{prosodicDiagram}

b. *\begin{prosodicDiagram}
 & PW
 & Ft
 & \sigma \sigma \sigma \sigma
\end{prosodicDiagram}

Thus, we see that Sofía’s PWs are *prosodically constrained*, where the upper bound on prosodic structure permitted is a Foot optionally preceded by an unfeated syllable. The prosodic structure in (12b) is therefore apparently prohibited in Sofía’s monomorphemic words at this stage of development.²

In this section we have shown that Sofía’s monomorphemic PWs at 1;8–1;9 years are generally composed of an optional (unstressed and unfooted) syllable followed by a trochaic foot. Sofía has therefore gone beyond the Minimal Word stage by the age of 1;8 years — a time when the maximal structure found in the speech of many of her English- and Dutch-speaking peers is only a binary foot (Demuth & Fee 1995). There are (at least) two possible explanations for this apparently precocious behavior: First, it could be that Sofía is more advanced than her other Spanish-speaking peers, though Lleó (1997, 1998) reports similar findings of early trisyllabic wSw lexical items from several Spanish-speaking children of around the same age. It therefore appears that Sofía’s prosodic word development is typical of other Spanish-speaking children of the same age. Alternatively, then, it may be that the prosodic structure of Spanish differs sufficiently from that of English and Dutch such that the development of Spanish PWs will take a different course. Note that this prosodic difference would need to prevail despite the fact that the default and most frequent position of stress in Spanish creates a word-final trochaic foot. The data from Sofía are inadequate for fully addressing this hypothesis as they were not collected from the onset of her first words. However, given the higher frequency of polysyllabic words in Spanish, we predict that Spanish-speaking children will begin to represent more complex prosodic word structures at an earlier stage of development than their English- and Dutch-speaking peers. That is, we expect that all children will exhibit *prosodic constraints* in the development of their early words, but also that the prosodic characteristics of the target language will have a major influence in determining the nature of those *prosodic constraints* (cf. Demuth 1996a).

In the following section we explore the implications of the theory *Prosodic Constraints* for the emergence of grammatical morphology.

4. Prosodic constraints and multimorphemic words and phrases

In their theory of prosodic structure Selkirk (1984, 1996) and Nespor & Vogel (1986) show how grammatical morphemes and lexical items within an utterance are prosodically organized into Phonological Words and Phonological Phrases. Selkirk (1996) provides a ‘typology’ of prosodic structures that grammatical morphemes (or function categories) may assume within a larger Phonological Phrase. These are outlined below, where \text{fnc} = \text{(closed class grammatical) functional item} and \text{lex} = \text{(open class) lexical item}.

(13) The prosodic status of grammatical function morphemes

\begin{prosodicMatrix}
\text{Prosodic Word} & (fnc)_{pw} (\text{lex})_{pw} & (\text{pp})
\text{Prosodic Clitics} & & \\
 a. \text{free clitic} & (fnc \ (\text{lex})_{pw} & (\text{pp})
 b. \text{internal clitic} & (fnc \ (\text{lex})_{pw} & (\text{pp})
 c. \text{affixal clitic} & (fnc \ (\text{lex})_{pw} & (\text{pp})
\end{prosodicMatrix}

These structures can be schematized as follows.
Selkirk (1996) shows that the prosodic structures permitted will vary both from language to language, as well as within a language, depending on the nature of the prosodic characteristics of the grammatical morpheme. For example, *unstressed* English function words such as prepositions, articles, auxiliaries, and pronouns take the structure in (14a), where the function word is prosodified at the level of the PP (e.g. *to Boston, a message, can cook, his picture*). In contrast, stressed auxiliaries and pronouns (e.g. *we CAN, HE knows*) are themselves PWs, and combine with lexical items at the level of the PP (14). The structures in (14b) and (14c) occur in other languages, but not in English. We use the above as a starting point for examining the shape of Sofia’s multimorphic Phonological Phrases, and show that she has both the structures in (14a) and (14b) (where function words are prosodified along with the lexical item as a PW), albeit for different grammatical morphemes.

Consider Sofia’s quadrasyllabic multimorphic forms in (15). These consist of either a trisyllabic lexical item plus a grammatical morpheme such as a determiner (*la muñéka/ ‘the doll’), or a disyllabic lexical item plus a disyllabic determiner (*una móto/ ‘a motorbike’). These quadrisyllabic targets are prosodified in Spanish as SwSw at the level of the Phonological Phrase. Under the *rhythmic constraints* account we would expect such forms to be produced in full, with the determiner included. However, given what we now know about the prosodic constraints operating on Sofia’s monomorphic PWs, the *prosodic constraints* account would predict a trisyllabic wSw form to be produced, and this is exactly what we find.

(15) Prosodic Clitics (Det): SwSw > wSw

<table>
<thead>
<tr>
<th>Child</th>
<th>Adult target</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. [namáka]</td>
<td>/una:amáka/ ‘a hammock’ (1;8)</td>
</tr>
<tr>
<td>b. [eméka]</td>
<td>/la muñéka/ ‘the doll’ (1;9)</td>
</tr>
<tr>
<td>c. [amvéka]</td>
<td>/la muñéka/ ‘the doll’</td>
</tr>
<tr>
<td>d. [namóto]</td>
<td>/una móto/ ‘a motorbike’</td>
</tr>
</tbody>
</table>

In all cases a maximum of three syllables was produced. When the indefinite article *una* is used, the initial vowel/syllable is dropped (15a, d). In contrast, the vowel (or an approximation thereof) of the definite feminine article is maintained in (15b, c) and a syllable from the trisyllabic word *muñéka* ‘doll’ is omitted. Neither of these scenarios is expected under the rhythmic constraints account, whereas both are possible and expected under a prosodic constraints account. The structure that appears to be operative is that in (16a), a structure similar to that seen above in the discussion of monomorphic PWs (cf. (10) and (12a)).

(16) a. PW b. *PW b’. *PW

<table>
<thead>
<tr>
<th>Cl</th>
<th>Ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>σ</td>
</tr>
<tr>
<td>σ</td>
<td>σ</td>
</tr>
</tbody>
</table>

Cl refers to a *prosodic clitic*, equivalent to Selkirk’s *fnc*. Note that the clitic appears to be limited to one syllable — it cannot have the phonological content of a foot. That is, the structure in (16b) is disallowed, as already shown in (12b) above, and its prosodic clitic equivalent in (16b’) is no better. It therefore appears that the determiner is prosodified as part of the PW, but is prosodically limited to one syllable. This is exactly what was found in Sofia’s multisyllabic monomorphic word targets (cf. (12a)).

In addition to noun phrases consisting of Det + Noun, Sofia uses some more complex structures involving either verbs and their complements (e.g. V + N, (Neg +) V (+ Adv)), or prepositions and their complements (e.g. Prep + Det + N). These structures are no longer merely Phonological Words but higher level Phonological Phrases. We might therefore expect more grammatical morphology to be represented. The data are presented in (17).

(17) Phonological Phrases (V, Neg, Prep): (w)SwSw > (s)SwSw

<table>
<thead>
<tr>
<th>Child</th>
<th>Adult target</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. [elakása]</td>
<td>/en la kása/ ‘in the house’ (1;8)</td>
</tr>
<tr>
<td>b. [akaása]</td>
<td>/a la kása/ ‘to the house’</td>
</tr>
<tr>
<td>c. [enóno]</td>
<td>/ase nóno/ ‘to go to sleep’</td>
</tr>
<tr>
<td>d. [nonáda]</td>
<td>/no ai náda/ ‘there isn’t anything’</td>
</tr>
<tr>
<td>e. [egwardáda]</td>
<td>/está gwardáda/ ‘it is put away’</td>
</tr>
</tbody>
</table>

Here we see some variation in the shape of the forms actually produced, yet there is also some regularity. In all cases there are two types of constraints that must be satisfied: First, we have already seen that there is an upper bound on the
amount of structure that can be represented as part of a PW, and this is a maximum of three syllables (a foot with a preceding syllable). Determiners are prosodic clitics which prosodify along with the following noun as part of a PW, as seen in (17a, b). In both these cases the Preposition is also prosodified, providing evidence of access to higher-level PP. The second constraint appears to operate on the amount of structure that can be represented at the level of the PP. This also appears to be one syllable. This is seen in examples (17c, d, and e) where disyllabic verbs and/or negation and a verb are reduced to one syllable independent of the amount of structure within the PW (either two syllables (17c, d) or three syllables (17e)). It therefore appears that prosodic constraints are operating at both the level of the PW and the PP, and that these are independent of one another. The structure permitted is given in (18).

\[
\begin{array}{c}
\text{PP} \\
\text{Cl} \\
\text{Ft} \\
\sigma \sigma
\end{array}
\]

Note that the preservation of either three or four syllables (depending on the grammatical structure involved) falls out naturally from the theory of prosodic constraints. In contrast, the rhythmic constraints account would predict that four syllables should surface. It therefore appears that Sofia must be sensitive to the hierarchical nature of the prosodic representations, and must be operating at this level rather than at the level of surface rhythmic constraints.

In this section we have seen that Sofia treats Det + Noun sequences as PWs, where the determiner can take the form of one syllable, and the maximum amount of structure permitted is a Foot preceded by a syllable. This is the same structure permitted for monomorphemic words. On the other hand, Sofia is also capable of producing quadrasyllabic PPs, where a monosyllabic Verb, Preposition, or Negation can precede the PW. Thus, Sofia can produce an increased number of surface syllables (and grammatical morphemes) only if they are represented at the higher level of a Phonological Phrase. These facts are difficult to deal with under a surface level rhythmic production constraints account. They fall out naturally, however, from a theory of Prosodic Constraints (Demuth 1995; Demuth & Fee 1995).

5. Implications for the emergence of English grammatical morphology

In the foregoing discussion of Spanish grammatical morphology we have shown that different types of grammatical morphology are prosodified at different levels of structure. We have also shown that Sofia’s early utterances are prosodically constrained, even though she apparently has access to several different levels of prosodic structure (including Ft, PW, PP). If we know the level at which different grammatical morphemes are prosodified in a language, and the nature of the prosodic constraints operative within a child’s grammar at a given point in development, we should be able to make strong predictions regarding the types of grammatical morphemes that are likely to appear. Consider the case of English stressed and unstressed object pronouns as in ‘LIKE ’im’ versus ‘like HIM’. When the pronoun is stressed it functions as an independent PW that would combine with a verb at the level of the Phonological Phrase. This is illustrated in (19a). In contrast, the unstressed pronoun functions as a free prosodic clitic with the structure shown in (19b).

\[
\begin{array}{c}
\text{a. PP} \\
\text{PW} \\
\text{PW} \\
\text{lex} \\
\text{fnc} \\
\text{like} \\
\text{HIM} \\
\text{LIKE ‘im}
\end{array}
\]

If the prosodic constraints in a child’s grammar permit Phonological Phrases that contain only a PW and not other prosodic material, then both of the structures in (19) will be ruled out. This would be typical of what is found at the one-word stage of development that many children exhibit. On the other hand, if two PWs are permitted within a PP, the structure in (19a) would be expected. Alternatively, it could be that two PWs are disallowed, but that a PW is permitted with some accompanying material that is not itself a PW. In this case a structure like that in (19b) would be permitted. Matthei (1989:47) provides an interesting example of a case like that in (19a). Here we see that two lexical items can be produced in isolation, each a disyllabic PW (constituted of a binary (probably trochaic) foot) (20a, b). But when the two are combined into a possessive construction both items are phonologically reduced (20c), again yielding a binary foot.
It would appear that, at 1;5 years, this child does not have access to the higher level of the PP, or at least does not differentiate it from the level of the PW. Thus, the PW constraints apply, yielding a binary foot, as illustrated below.

The prosodic constraints approach can also be extended to non-syllabic grammatical morphemes like those found in English. Given the different levels of prosodic structure at which different grammatical morphemes are prosodified, we can again make predictions about which morphemes children are most likely to acquire first. Specifically, we predict earlier acquisition of grammatical morphemes prosodified at the level of the PW and later acquisition of those prosodified at the level of the PP. This should be true even with ‘surface equivalent’ structures such as plural versus possessive *is*: The first is prosodified as part of a PW (Selkirk’s affixal clitic illustrated in (14c), the second as part of a PP (Selkirk’s free clitic illustrated in (14a)).

Interestingly, these predictions are supported by the findings reported in Brown (1973), where all three children studied exhibited earlier acquisition of the plural morpheme than the possessive counterpart. Thus, it would appear that, in addition to whatever semantic or syntactic constraints might be operating on children’s early grammars, the prosodic realization of different grammatical function morphemes may play a role in determining the rate and relative order in which they are acquired.

6. Discussion

This paper has shown that certain types of grammatical morphology were either included or excluded from Sofía’s early words depending on (1) the level of structure at which the particular grammatical morpheme is prosodified, and (2) the prosodic constraints operating within the child’s grammar at a given point in development. The nature of these prosodic constraints may vary to some extent from child to child and from language to language. Once these were determined for Sofía, it was possible, given a new target utterance, to predict which syllables and/or morphemes would be included or omitted.

The Spanish data are extremely interesting for a number of reasons. First, they demonstrate an early awareness of different levels of prosodic structure, and these are reflected in the shape of the child’s early multimorphemic utterances. Interestingly, studies of infant speech perception indicate that there may be an awareness of ‘phrase boundaries’ (i.e. Phonological Phrases) even as young as 4.5 months (cf. Jusczyk 1989; Jusczyk, Kemler Nelson, Hirsh-Pasek, Kennedy, Woodward & Piwow 1992; see also Hirsh-Pasek, Kemler Nelson, Jusczyk, Wright Cassidy, Druss & Kennedy 1987). It should not be surprising, then, that we find early production evidence for such structures. What has been unclear until now is how and when children begin to represent aspects of this higher-level hierarchical structure in their own productions, and the role this may play in shaping early multimorphemic utterances.

Second, results from this study indicate that Spanish-speaking children may begin to represent larger and higher-level units of prosodic structure earlier than children learning English or Dutch. This hypothesis will need to be tested over larger groups of children with longitudinal data from 1–3 years, however preliminary reports on other Spanish-speaking children from Lleó (1997, 1998), plus studies of children learning Italian grammatical function morphology (Guasti 1993/1994; Bottari, Cipriani & Chilosi 1993/1994) indicate that this may be the case. It therefore seems reasonable to expect that the nature of prosodic constraints will vary to some extent from language to language, and that learning these constraints represents one of several early steps toward learning the grammatical structure of the target language (Demuth 1996a).

Third, if all children exhibit prosodic constraints in the acquisition of
phonological and morphological structure, we might expect that children with language delay might also exhibit less developed prosodic structures than their peers. Interestingly Fikkert & Penner (1998), in their study of two language-impaired children learning Swiss German, report that this is precisely the case. The theory of *Prosodic Constraints* may therefore be useful for investigating individual differences of children learning the same language and in the early identification of children at risk for language delay.

Several scholars have recently begun to explore an Optimality-theoretic approach to the acquisition of prosodic, segmental, phonotactic, and stress systems (e.g. Demuth 1995, 1996b, 1997; Gnanadesikan 1995; Paradis 1995; Pater 1997; Bernhardt & Stemberger 1998; see also papers in Bernhardt, Gilbert & Ingram 1996). The study presented here lays the groundwork needed for exploring the acquisition of larger prosodic structures along similar lines (see also Gerken 1996). Ultimately, I suggest that a fuller understanding of the course of language development will need to be couched within a more general *Constraint-based Approach to Language Acquisition*, where phonological constraints of various types, along with memory, planning, and other grammatical constraints, will all be found to play a role in determining the shape of children’s early utterances and how these develop over time. The acquisition of grammatical morphology at the higher-level Phonological Phrases examined here provides a step in that direction.

Acknowledgments

An earlier version of this paper was presented at the 21th Conference on Language Development, Boston University. I thank that audience as well as Silvia Gennari, Barbara Höhle, and Jürgen Weissenborn for comments and discussion.

Notes

1. I follow Hayes (1995) in treating this pretonic syllable as unfooted, though this has no larger theoretical implications here. Interestingly, many English- and Dutch-speaking children seem to produce SwSw words prior to allowing wSw words — even to the extent of adding epenthetic vowels (Fikkert 1994; Demuth & Fee 1995). This indicates that unfooted syllables may be dispreferred in the early grammars of these children.

2. We know little of when and how Spanish-speaking children learn about secondary stress. It is therefore possible that the forms in (11) are actually wSwSw targets for children, where the initial weak syllable or syllables are omitted. However, even if this were the case, these forms would still be problematic for the *rhythmic production constraint* account which would predict only disyllabic Sw forms to surface.

3. Studies of the acquisition of English grammatical morphology rarely document the prosodic (stressed vs. unstressed) status of pronouns, yet such details are critical to developing a more sophisticated understanding of how and when children will omit certain types of grammatical morphology.

References

MORPHOLOGICAL DEVELOPMENT: PROSODIC CONSTRAINTS

